Cardiac hypertrophy, substrate utilization and metabolic remodelling: cause or effect?
نویسندگان
چکیده
1. Metabolic remodelling in the heart occurs in response to chronically altered workload and substrate availability. Recently, the importance of the metabolic remodelling processes inherent in the hypertrophic growth response (whether primary or secondary) has been recognized. 2. Altered energy demand, shifts in substrate utilization and increased oxidative stress are observed in the hypertrophic heart. Both a shift away from carbohydrate usage (i.e. insulin resistance) and a shift to carbohydrate usage (i.e. pressure loading) are associated with disturbed cardiomyocyte Ca(2+) homeostasis and the development of cardiac hypertrophy. 3. A change in the balance of myocardial usage of fatty acid and glucose substrates must entail a degree of cellular oxidative stress. Increased throughput of any substrate will necessarily involve a regional imbalance between reactive oxygen species (ROS) production and breakdown. 4. In addition to a number of enzyme generators of ROS at various intracellular locations, the heart also contains a number of endogenous anti-oxidants, to restrict steady state ROS levels. The balance between ROS generation and their elimination by endogenous anti-oxidant mechanisms plays a critical role in preserving cardiac function; inappropriate levels of myocardial ROS likely precipitate impairment of myocardial function and abnormalities in cardiac structure. 5. Although different metabolic adaptations are associated with hypertrophic responses of contrasting aetiology, there is accumulating evidence that the joint insults of increased production of ROS and disturbed Ca(2+) handling in the cardiomyocyte comprise the primary lesion. These molecular signals operate together in a feed-forward mode and have the capacity to inflict substantial functional and structural damage on the hypertrophic myocardium.
منابع مشابه
Functional and metabolic adaptation in uraemic cardiomyopathy.
Cardiovascular complications are the leading cause of death in patients with chronic kidney disease (CKD). The uraemic heart undergoes substantial remodelling, including left ventricular hypertrophy (LVH), an important determinant of heart failure. LVH results in a shift in myocardial substrate oxidation from fatty acids towards carbohydrates however, whether this metabolic adaptation occurs in...
متن کاملCardiac LXRa protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization
Pathological cardiac hypertrophy is characterized by a shift in metabolic substrate utilization from fatty acids to glucose, but the molecular events underlying the metabolic remodeling remain poorly understood. Here, we investigated the role of liver X receptors (LXRs), which are key regulators of glucose and lipid metabolism, in cardiac hypertrophic pathogenesis. Using a transgenic approach i...
متن کاملMetabolic therapy at the crossroad: how to optimize myocardial substrate utilization?
There has been growing interest in targeting myocardial substrate metabolism for the therapy of cardiovascular and metabolic diseases. This is largely based on the observation that cardiac metabolism undergoes significant changes during both physiologic and pathologic stresses. In search for an effective therapeutic strategy, recent studies have focused on the functional significance of the sub...
متن کاملHigh intensity interval training alters substrate utilization and reduces oxygen consumption in the heart.
AIMS although exercise training induces hypertrophy with improved contractile function, the effect of exercise on myocardial substrate metabolism and cardiac efficiency is less clear. High intensity training has been shown to produce more profound effects on cardiovascular function and aerobic capacity than isocaloric low and moderate intensity training. The aim of the present study was to expl...
متن کاملc-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction
Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical and experimental pharmacology & physiology
دوره 33 1-2 شماره
صفحات -
تاریخ انتشار 2006